¼¸ºÎ³ß´çÓ빫²îÂÛ̳------ÖÂÁ¦ÓÚ²úÆ·¼¸ºÎÁ¿¹«²î±ê×¼GD&T (GDT:ASME)|New GPS(ISO)Ñо¿/CADÉè¼Æ/CAM¼Ó¹¤/CMM²âÁ¿  


·µ»Ø   ¼¸ºÎ³ß´çÓ빫²îÂÛ̳------ÖÂÁ¦ÓÚ²úÆ·¼¸ºÎÁ¿¹«²î±ê×¼GD&T (GDT:ASME)|New GPS(ISO)Ñо¿/CADÉè¼Æ/CAM¼Ó¹¤/CMM²âÁ¿ » ÓϿռ䣺CAXÈí¼þ¿ª·¢£¨Ò»£©»ù´¡ÀíÂÛ » Êýѧ¿â » Êýѧ»ù´¡¿â
Óû§Ãû
ÃÜÂë
×¢²á °ïÖú »áÔ± ÈÕÀú ÒøÐÐ ËÑË÷ ½ñÈÕÐÂÌû ±ê¼ÇÂÛ̳ΪÒѶÁ


»Ø¸´
 
Ö÷Ì⹤¾ß ËÑË÷±¾Ö÷Ìâ ÏÔʾģʽ
¾É 2006-12-18, 10:52 AM   #1
relax
³õ¼¶»áÔ±
 
×¢²áÈÕÆÚ: 06-12
Ìû×Ó: 6
¾«»ª: 0
ÏÖ½ð: 21 ±ê×¼±Ò
×ʲú: 21 ±ê×¼±Ò
relax Ïòןõķ½Ïò·¢Õ¹
ĬÈÏ ËùÓÐÊé¼®&Ë÷ÊéºÅ

1)¡¶Ë¼Ïë¹æÂɵÄÑо¿¡·¡¶An Investigation of the laws of Thought¡·Boole
2)¡¶ÎïÀíѧÖеÄȺÂÛ¡· ÂíÖÐæëÖø
3)¡¶Ê²Ã´ÊÇÊýѧ¡·¿ÂÀÊÖø
01-49/0282
Õâ±¾Êé½²ÊöÁËÊýѧµÄÕû¸ö·¢Õ¹¹ý³Ì£¬ÊÇÒ»±¾ÈëÃŽ̡̳£
4)¡¶ÊýѧµÄÔ­ÀíÓëʵ¼ù¡·
o1-0/8699
5£©¡¶ÖØÎÂ΢»ý·Ö¡· ÆëÃñÓÑÖø
o172/0274
6£©·ºº¯·ÖÎö½Ì³Ì
o177/0131
7£©HermiteÕ¹¿ªÓë¹ãÒ庯Êý
o177.4/1216
10£©Computational line geometry
o123.3/P871
11£©Graph drawing software
TP391.41/G766-1

12£©¡¶¼ÆËã»úͼÐÎѧ¡· ³£Ã÷Öø

13£©¼ÆËã»úͼÐÎѧ¡ª¡ª¼¸ºÎ¹¤¾ßËã·¨Ïê½â
TP391.41/5042-2
ÕâÊÇÒ»±¾¹ØÓÚ¼¸ºÎͼÐÎËã·¨µÄ¹¤¾ßÊ飬дµÃ»¹ÊǺÜÏêϸµÄ¡£
20£©¡¶Í¼ÂÛ¼òÃ÷½Ì³Ì¡·
ͼÂÛÊÇ×éºÏÊýѧµÄÒ»¸ö·ÖÖ§
21£©²¢ÐÐͼÂÛËã·¨
o157.5/0288
22£©È¤Î¶µÄͼÂÛÎÊÌâ
o157.5-49/8541
23£©Í¼ÂÛ¼°ÆäËã·¨
o157.5/4224

´ËÌûÓÚ 2007-09-07 02:35 PM ±» yogy ±à¼­.
relaxÀëÏßÖÐ   »Ø¸´Ê±ÒýÓôËÌû
GDT×Ô¶¯»¯ÂÛ̳£¨½öÓοͿɼû£©
¾É 2006-12-23, 03:15 PM   #2
huangyhg
³¬¼¶°æÖ÷
 
huangyhgµÄÍ·Ïñ
 
×¢²áÈÕÆÚ: 04-03
Ìû×Ó: 18592
¾«»ª: 36
ÏÖ½ð: 249466 ±ê×¼±Ò
×ʲú: 1080358888 ±ê×¼±Ò
huangyhg Ïòןõķ½Ïò·¢Õ¹
ĬÈÏ »Ø¸´: ËùÓÐÊé¼®&Ë÷ÊéºÅ

ÒÔÉϾùΪÉϺ£Í¼Êé¹ÝµÄË÷ÊéºÅ£¬ºìÉ«±íʾÒѶÁ£¬À¶É«±íʾ´ý½èÖС£
1)¡¶Ë¼Ïë¹æÂɵÄÑо¿¡·¡¶An Investigation of the laws of Thought¡·Boole
2)¡¶ÎïÀíѧÖеÄȺÂÛ¡· ÂíÖÐæëÖø
3)¡¶Ê²Ã´ÊÇÊýѧ¡·¿ÂÀÊÖø
01-49/0282
Õâ±¾Êé½²ÊöÁËÊýѧµÄÕû¸ö·¢Õ¹¹ý³Ì£¬ÊÇÒ»±¾ÈëÃŽ̡̳£
4)¡¶ÊýѧµÄÔ­ÀíÓëʵ¼ù¡·
o1-0/8699
5£©¡¶ÖØÎÂ΢»ý·Ö¡· ÆëÃñÓÑÖø
o172/0274
6£©·ºº¯·ÖÎö½Ì³Ì
o177/0131
7£©HermiteÕ¹¿ªÓë¹ãÒ庯Êý
o177.4/1216
10£©Computational line geometry
o123.3/P871
11£©Graph drawing software
TP391.41/G766-1

12£©¡¶¼ÆËã»úͼÐÎѧ¡· ³£Ã÷Öø

13£©¼ÆËã»úͼÐÎѧ¡ª¡ª¼¸ºÎ¹¤¾ßËã·¨Ïê½â
TP391.41/5042-2
ÕâÊÇÒ»±¾¹ØÓÚ¼¸ºÎͼÐÎËã·¨µÄ¹¤¾ßÊ飬дµÃ»¹ÊǺÜÏêϸµÄ¡£
20£©¡¶Í¼ÂÛ¼òÃ÷½Ì³Ì¡·
21£©²¢ÐÐͼÂÛËã·¨
o157.5/0288
22£©È¤Î¶µÄͼÂÛÎÊÌâ
o157.5-49/8541
23£©Í¼ÂÛ¼°ÆäËã·¨
o157.5/4224

´ËÌûÓÚ 2007-01-13 10:57 AM ±» huangyhg ±à¼­.
huangyhgÀëÏßÖÐ   »Ø¸´Ê±ÒýÓôËÌû
¾É 2007-01-13, 10:54 AM   #3
huangyhg
³¬¼¶°æÖ÷
 
huangyhgµÄÍ·Ïñ
 
×¢²áÈÕÆÚ: 04-03
Ìû×Ó: 18592
¾«»ª: 36
ÏÖ½ð: 249466 ±ê×¼±Ò
×ʲú: 1080358888 ±ê×¼±Ò
huangyhg Ïòןõķ½Ïò·¢Õ¹
ĬÈÏ »Ø¸´: ËùÓÐÊé¼®&Ë÷ÊéºÅ

1)×éºÏͼÂÛ
лÕþ ´÷Àö Öø
¹ú·À¿Æ¼¼´óѧ³ö°æÉç 2003Äê
o157.5/3711
8·Ö

2£©Í¼ÂÛ¼°ÆäÓ¦Ó㨵ڶþ°æ£©
¬¿ª³Î ¬»ªÃ÷ Öø
Ç廪´óѧ³ö°æÉç
1995Äê
o157.5/2213-01
3·Ö £¨²»ÊʺÏÈëÃÅÓã©

3)³éÏó´úÊý»ù´¡
ÌÆÖÒÃ÷ Öø ¸ßµÈ½ÌÓý³ö°æÉç 2006Äê
o153/0256
5·Ö £¨Ò»¶Ñ¸ÅÄ¼Ç²»×¡µÄÊ飩

4£©×ʱ¾Êг¡²©ÞÄÂÛ
Âí¹ãÆæ Öø ÉϺ£²Æ¾­´óѧ³ö°æÉç 2006Äê
F830.9 7104
8·Ö £¨¶ÔÖйú¹ÉƱÊг¡·ÖÎö±È½Ï͸³¹µÄÊ飩

5)´úÊý¼¸ºÎ
R.¹þ´Ä»ô¶÷ Öø ¿ÆÑ§³ö°æÉç 2001 Äê
o187 6041
5·Ö £¨¿´²»ÏÂÈ¥µÄÊ飩
huangyhgÀëÏßÖÐ   »Ø¸´Ê±ÒýÓôËÌû
¾É 2007-01-15, 08:53 PM   #4
math
³õ¼¶»áÔ±
 
×¢²áÈÕÆÚ: 07-01
Ìû×Ó: 10
¾«»ª: 0
ÏÖ½ð: 32 ±ê×¼±Ò
×ʲú: 32 ±ê×¼±Ò
math Ïòןõķ½Ïò·¢Õ¹
ĬÈÏ »Ø¸´: ËùÓÐÊé¼®&Ë÷ÊéºÅ

M.Kline£¬Mathematics-The Loss of Certainty, Oxford University Press,1980
ÖÐÎÄÒë±¾£ºÀîºê¿ýÒ룬Êýѧ£ºÈ·¶¨ÐÔµÄɥʧ£¬ºþÄÏ¿ÆÑ§¼¼Êõ³ö°æÉ磬1997
T.Dantzig,Number-The Language of Science, George Allen & Unwin Ltd,1938
ÖÐÎÄÒë±¾£ºËÕÖÙÏæÒ룬Êý£º¿ÆÑ§µÄÓïÑÔ£¬ÉϺ£½ÌÓý³ö°æÉ磬2000
mathÀëÏßÖÐ   »Ø¸´Ê±ÒýÓôËÌû
¾É 2007-01-15, 08:53 PM   #5
math
³õ¼¶»áÔ±
 
×¢²áÈÕÆÚ: 07-01
Ìû×Ó: 10
¾«»ª: 0
ÏÖ½ð: 32 ±ê×¼±Ò
×ʲú: 32 ±ê×¼±Ò
math Ïòןõķ½Ïò·¢Õ¹
ĬÈÏ »Ø¸´: ËùÓÐÊé¼®&Ë÷ÊéºÅ

¡¶¼¸ºÎÔ­±¾¡·
¡¶¼¸ºÎ»ù´¡¡·
mathÀëÏßÖÐ   »Ø¸´Ê±ÒýÓôËÌû
¾É 2007-01-27, 10:30 PM   #6
huangyhg
³¬¼¶°æÖ÷
 
huangyhgµÄÍ·Ïñ
 
×¢²áÈÕÆÚ: 04-03
Ìû×Ó: 18592
¾«»ª: 36
ÏÖ½ð: 249466 ±ê×¼±Ò
×ʲú: 1080358888 ±ê×¼±Ò
huangyhg Ïòןõķ½Ïò·¢Õ¹
ĬÈÏ »Ø¸´: ËùÓÐÊé¼®&Ë÷ÊéºÅ

5 Ò×µ½ëy(ŸoÁĵ½ÓÐȤ) .. µÚÈý‚€ÊÇ×xÁËͶÙYˆó³êÂÊÒ²¾ÍÊÐ×xÁ˵ÄÔ’Œ¢?íµÄÓÐÓó̶ȵÚËÄ‚€ÊǽðӹСÕfÃܼ®µÄî?±È)
1
Îä®”éLÈ­( »ù±¾¹¦·ò)
Atiyah&McDonald
µÄ Introduction to Commutative Algebra ºÍ Matsumura µÄ Commutative Algebra ÊÇ´ú”µŽ×ºÎÖдú”µ²¿·ÝµÄ±³¾°Öª×R. ƒÉ±¾•øÖ»ÖØÒ•´ú”µ¶ø²»Ìá¼°Ž×ºÎ,µ«µÚÒ»±¾•øµÄÁ•î}ÓкܶàÒý³öŽ×ºÎ±³ááÒâÁxµÄºÃ†–î}. ÊÂŒ?ÉÏÈκÎÒ»‚€½»“Q´ú”µµÄ¶¨Àí¶¼ÓЎ׺ÎÒâÁx.

-----------------------------
À§ëy¶ÈÒ×ȤζÐÔ ** ͶÙYˆó³êÂÊ **
2
ÌÝë…¿v (¾šÁËÏëßMÄÄ‚€·ÖÖ§¶¼¿ÉÒÔ ...)
Robin Hartshorne
µÄ Algebraic Geometry ÊÇ´ú”µŽ×ºÎµÄ½›µä½Ì¿Æ•ø.ÈκÎÒ»‚€Äê¼o²»µ½ÎåÊ®µÄ´ú”µŽ×ºÎŒW¼Ò¶¼ÊÇŒWß@±¾•øéL´óµÄ. ß@±¾•øÊÇ Grothendick µÄ EGA ºÍ SGA Ò»²¿·ÖµÄÒ»‚€·Ç³£ÓÐϵ½yµÄ¿‚½Y. Grothendick µÄ•ø°üº¬µÄƒÈÈݺÜýRÈ«µ«ÊÇʧ춲»Œ?ëH: Ò²¾ÍÊÇÓ‘Õ“µÄŒ¦Ïóß^ì¶Ò»°ãÓÑ•r›]ÓЎ׺ÎÒâÁx, ß@Ò»ücÊ®·Ö²»ºÃ. µ«ÊÇ Hartshorne µÄ•ø°ÑÕû‚€ Grothendick µÄ Scheme ¾VîI×÷ÁËÒ»‚€×îÇ¡®”µÄÔ?áŒ.ß@±¾•øµÄÁ•î}Ò²·Ç³£ÖØÒª²»¹ÜŒ¢?팦Ë㔵Ž×ºÎ»òÑ}Ž×ºÎ»ò¸üÉîÈëµÄ´ú”µŽ×ºÎß@±¾•øµÄÁ•î}¶¼ÊÇÓÀßhÓÐÓõÄ.

-----------------------------
À§ëy¶ÈÖеÈȤζÐÔ * ͶÙYˆó³êÂÊ ***
(PS: Hartshorne
µÄ•øµÄ¾«ÈAÔÚ 123 ÕÂ, Æä45ÕÂŒ¦ì¶Èç¹û²»ÊÇ×öË㔵Ž×ºÎµÄÈËÊÇ›]ÓÐÓÃÌŽµÄ,ÓиüºÃµÄÌæ´úÓÕø)
3
Ò»Ì×ÎäÐg·þï—(ÐÐ×ß½­ºþÒª´©Ò·þ)
Gunning
µÄ Lectures on Riemann surface »ò Forster »ò Farkas »ò Jost µÄ Riemann Surface: ÀèÂüÇúÃæÊÇÕæÕýµÄ”µŒW. ¸úÒ»ÇеĔµŒW·ÖÖ®¶¼ÓÐÖØ´óêP‚S. ÉÏÊöËÄ‚€×÷Õߵĕø¶¼ÓÐÏà®”Éî¶È. ÎÒÖ»†ˆß^ Gunning µÄ, ÊÇÒ»±¾±ÈÝ^ÖØÒ•"ÉÏͬÕ{Ⱥ" µÄºÃ•ø. ÆäËûŽ×±¾ÓÖ»òÖØÒ•ÀèÂüÃæµÄ hyperbolic geometry »ò automorphism »ò special linear series. ¶¼·Ç³£ÓÐÒâ˼. ºÜ¶àÈË ,ÓÈÆäÊÇÖЇøÈË߀ϲšgÎéø™ìûŒ‘µÄÀèÂüÇúÃæÒýÕ“. µ«ÎÒ?K²»ÊǷdz£Ï²šg.

-------------------------------
À§ëy¶ÈÒ×ȤζÐÔ *** ͶÙYˆó³êÂÊ 0
4
È«ÕæÅÉ»ù±¾ƒÈ¹¦(Ò»¶¨Òª¾š)
Griffith& Haris
µÄ Principles in Algebraic Geometry. ß@±¾•øÊǽ›µäÖеĽ›µä.ÊÇÑ}Ž×ºÎµÄ»ù±¾½Ì²Ä. ß@±¾•øµÄÿһÕ¶¼ºÜ°ô. µÚÒ»ÕÂÊÇHodge ÀíÕ“..Êǎ׺ÎÖÐ×îÉîŠWµÄÀíÕ“. µÚ¶þÕÂÊÇKodaira ǶÈ붨ÀíÑ}Á÷ÐеÄǶÈë±ÈŒ?Á÷ÐεÄǶÈëÓÐȤ¶àÁË. µÚÈýÕÂÊÇ current ºÍ spectral sequence, ÊǺÜÖØÒªµÄ¹¤¾ß. µÚËÄÕÂÊÇÇúÃæÕ“ . Œ‘µÄºÜÔ”±Mµ«ÊÇÓиüºÃµÄ•ø(ÒŠ6). µÚÎå?ˆÊÇÌØÊ⌣î}Œ¦´üÊóŽ×ºÎÖв»Í¬·½ÏòµÄÈËÓв»Í¬¹¦ÓÃ.

-------------------------------
À§ëy¶ÈÖеÈȤζÐÔ **** ͶÙYˆó³êÂÊ ****


×ªÔØ×Ô£¢www.math.org.cn ×÷ÕßQuillen¡¡ÌâĿ׌ÎÒ?í°l´ú”µŽ×ºÎ…¢¿¼•ø£¢

5 ¾Åê–Éñ¹¦
Barth & Hulek & Peters
µÄ Compact complex surfaces. ß@±¾•øÊǽ›µäÖеĽ›µäÖеĽ›µä. ÖvµÄÊÇ´ú”µÇúÃæµÄ¸÷·NŒ£î}. ÿ‚€Õ¹?¶¼Œ‘µÄŸoÏÞÍêÃÀ. ¿ÉÒÔÕfÈç¹ûŒW´ú”µŽ×ºÎ›]†ˆß^ß@±¾•ø. ÉõÖÁÊÇŒWŽ×ºÐ›]†ˆß^ß@±¾•ø..¿ÉÒÔ¿¼‘]“QÐÐ.ÊǰÙÄêëyµÃÒ»ÒŠµÄºÃ•ø. ÎÒ‚€ÈËÒÔžé´Ë•øÐ°æµÄ×îááƒÉ?ˆŒ‘µÄÓÈÆäºÃ. Ò»ÊÇ K3 ÇúÃæÁíÒ»‚€ÊÇ Doanaldson ºÍ Seiber Witten ÀíÕ“. ¬FÔÚ¶¼ÊÇŸoÏÞŸáéTµÄŒ£î}.

-------------------------------
À§ëy¶ÈÖеÈȤζÐÔ ***** ͶÙYˆó³êÂÊ *****
6
ÉÙÁÖÅÉÁ_?hÈ­(¿ÉÒÔ¾š¾š,Èç¹û›]ÊÂ)
Robert Friedman
µÄ Algebraic Surfaces and Holomorphic Vector Bundles ß@±¾•øÊÇÖvÇúÃæºÍÉÏÃæµÄÏòÁ¿…². ÇúÃæµÃ²¿·ÖÖvµÃÓÐüc?y,ÊÂŒ?ÉÏ›]ÓÐÈ˰ÑÇúÃæÖvµÄ±È Barth ߀ºÃµÄ. ÏòÁ¿…²µÃ²¿·ÖÖµµÃÒ»¿´.

--------------------------------
À§ëy¶ÈÒ×ȤζÐÔ * ͶÙYˆó³êÂÊ ***
7
ÎüÐÇ´ó·¨ (¾šÍê¾Í¿ÉÒÔÎüȡ΢·ÖÍØ‰?ŒW¼ÒµÄƒÈ¹¦ÒԞ鼺ÓÃ)
Donaldson & Kroheimer
µÄ The Geometry of Four manifold. ß@ÊÇ΢·ÖÍØ‰?ÖеÄÂ}½›.ƒÉÈ˶¼ÊÇ´ó¼Ò. ´Ë•øÒý³öÁËËľSÁ÷Ð뵀 Gauge Invariant (ÒŽ¹ ²»×ƒÁ¿), ¶øÑ}ÇúÃæÊÇËľSÁ÷ÐÎÖеÄÒ»´óî? ..Òò´ËÒ²ÊÇ´ú”µŽ×ºÎµÄºÃ•ø.

--------------------------------
À§ëy¶ÈëyȤζÐÔ ***** ͶÙYˆó³êÂÊ 0 (±¾•øÐ§ÒæÔÚÎåÊ®Äêáá)
8
ǬÀ¤´óÅ²ÒÆ (¾šµ½Ò»°ë¾Í‰ò?ŠÁËÈ«²¿¾šÍêÄãÒ²ÍÂѪ¶øÍö)
John Morgan
ºÍ Robert Friedman µÄ Smooth four manifold and Complex surfaces.
ß@±¾•øÖvµÃÊÇ™EˆAÇúÃæºÍÆäÉÏÃæDonaldson ÒŽ¹ ²»×ƒÁ¿ÀíÕ“.×÷ÕßÀûÓôËÀíÕ“µÃµ½ÁËÇúÃæµÄÒ»‚€´ó¶¨Àí, ×CÃ÷ÁË×î¶àÖ»ÄÜÓÐÓÐÏÞ‚€Ñ}׃ÐÎî?¹²ÓÃÒ»‚€Î¢·Ö½Y˜‹. ÊÇÒ»±¾ºÜŒ£éTµÄ•øÎÒ߀ÔÚŬÁ¦ŒWÁ•.

---------------------------------
À§ëy¶È˜OëyȤζÐÔ **** ͶÙYˆó³êÂÊ **
9
½îÈâÈËºÍ¼Ó·ÆØˆµÄŸo”³ïL»ð݆ (¾šÇ°ÕˆÈý˼)
Haris
µÄ The Geometry of Algebraic Crves. ÊǷdz£·Ç³£ªMÔ×µÄîIÓò. Ñо¿µÄÊÇ´ú”µÇú¾€ÉϵÄÌØÊâ¾€ÐÔϵ½y. ·Ç³£ëy†ˆµÄÒ»±¾•ø.†ˆÍêááµÄÓÃÌŽÒ²²»¶à..µ«ÊÇ¿ÉÒԳɞéÒ»‚€´ú”µÇú¾€µÄŒ£¼Ò.
-------------------------------
À§ëy¶È˜OëyȤζÐÔ * ͶÙYˆó³êÂÊ ***
10
ÎåªzÅÉ„¦·¨ (ÓÐÓÃÌŽµ«ÊÇÏà®”ës?y.Æ´Æ´œ?œ?)
Joe Harris & David Morrison
µÄ Moduli of Curves ß@ÊÇÖvÇú¾€µÄÄ£¿ÕégµÄ½›µä.µ«ÎÒ?K²»ÄÇüNϲšg. ÑeÃæÓÐ Enumerative Geometry (Ó›”µŽ×ºÎ) µÄÒ»‚€ÒýÕ“. ÓÐÇú¾€Ä£¿ÕégÉϵÄÏཻ”µºÍ¸÷·NÐÔÙ|.-
--------------------------------
À§ëy¶ÈÖеÈȤζÐÔ ** ͶÙYˆó³êÂÊ *****
11
¾ÅêŽÕæ½› (¾šÍêáá¿ÉÒÔé_Ê¼ÕæÕýÑо¿†–î})
John Morgan
ºÍ Robert Friedman µÄ Gauge Theory and the Topology of Four-Manifolds. ÑeÃæÓÐGieseker Œ‘Ž×ºÎ²»×ƒÁ¿ÀíÕ“. ÀîòEµÄ Uhlenbeck ¾o»¯ºÍ Gesieker¾o»¯µÄ±ÈÝ^¶¨Àí. Morgan Ó‘Õ“ Donaldson ÒŽ¹ ²»×ƒÁ¿ºÍ¸ü¶àÈËŒ¦´ËÁ¿.

-----------------------------------
À§ëy¶ÈÖеÈȤζÐÔ ***** ͶÙYˆó³êÂÊ ***** µÄÓ‹Ëã½Y¹û.
12
Ì«˜OÈ­ (°lÕ¹ŸoÏÞ)
Daniel Huybrecht
µÄ The Geoemtry of Moduli Space of Sheaves.
ÊÇÏòÁ¿…²Ä£¿ÕégµÄ½›µäÓÕø. µÚ¶þ²¿·ÖÓдˌW¿Æ×îÏÈßMµÄ½Y¹û. ¸÷Õµĸ½ä›¶¼ÓкÜÖØÒªÓÖÓÐȤµÄ½Y¹û.

-----------------------------------
À§ëy¶ÈëyȤζÐÔ *** ͶÙYˆó³êÂÊ *****
13 MK47
²½˜Œ
Joyce, Gross & Huybrecht
µÄ Calabi-Yau Manifolds and Related Geometries. ÊÇ×îÐ嵀 Mirror symmetry µÄŒ£î}•ø. ÖvCalabi Yau Á÷Ðεĸ÷·NÏàêP†–î}. ÓÐYau ½â›Q Calabi ²ÂÏëµÄ¸ÅÊö. ÓÐ Mirror ²ÂÏëºÍ SYZ (Strominger& Yau& Zaslow) ²ÂÏë. ߀ÓÐ HyperKaeler Á÷ÐÎÐÔÙ|µÄÓ‘Õ“.ß@ÊǶþÊ®ÊÀ¼oµÄ”µŒW.

------------------------------------
À§ëy¶ÈÖеÈȤζÐÔ ***** ͶÙYˆó³êÂÊ *****
14
™CêP˜Œ (¿ÉÒÔ“ŒãyÐÐ)
Pandharipande, Sheldon Katz, Hori...
һȺÈ˺ό‘µÄ Mirror Symmetry . ³ýÁË Mirror conjecture ÔÚÎå´ÎÈý΢Á÷ÐÎ(quintic three fold )µÄ×CÃ÷Íâ, ߀°üÀ¨ÁË Gopakuma Vafa ²ÂÏë, Homological Mirror Symmetry ²ÂÏë, ÉõÖÁMirror Symmetry µÄÔ´î^: ¸ßÄÜÎïÀíÖеÄÏÒÕ“ºÍ±£½ÇˆöÕ“, È«¶¼ÓÉŒ£¼ÒˆÌ¹P.. ?Äëyµ½Ò×..ÎÒ¬FÔÚÒ²ÔÚé]êPÐÞ¾šÖÐ.
-------------------------------------
À§ëy¶È˜Oëy(ÎïÀí²¿·Ö) ȤζÐÔ ***** ͶÙYˆó³êÂÊ *****
15
Ô­×Ó?—( ...................)
Griffith
µÄ Topics in Trascendental Geometry ÊÇ»ôÆæ½Y˜‹(Hodge structure) µÄÒ»±¾½›µä•ø. ÔÚ1985Äê×óÓÒÓÐÒ»´óƱ”µŒW¼ÒÏë½â›Q»ôÆæ²ÂÏë (›]åe¾ÍÊÇÄÇ‚€Ò»°ÙÈf†–î}).Ëý‚ƒëmÈ»›]Óнâ³ö?íµ«Œ¦²ÂÏëÓкÜÉîÈëµÄÁ˽â . ±¾•øÊÇËý‚ƒ¹¤×÷µÄº†Êö. ÊÇÒ»±¾ëy×x…sºÜÖµµÃ×xµÄ•ø.
--------------------------------------
À§ëy¶È˜OëyȤζÐÔ ********************** ͶÙYˆó³êÂÊ *************************
ÁíÍâ߀ÓЎױ¾•ø›]Óнé½B..±ÈÈçÕfMori µÄÈýžéÑ}Á÷Ð뵀 Minimal Model Programm ÓÐºÜ¶àŒ£•ø..µ«ÊÇÒòžéß@‚€†–î}Òѽ›±»Ê’ÊaÌÃÒÔ¼°ÆäËûËÄ‚€Íâ‡øÈ˽â›Q (ËùÓоS¶È) ÆäͶÙYˆó³êÂÊÒѽ›ÊÇØ“µÄÁË. ÓÖ»òÊÇ£®£®£®

__________________
½èÓôïÀʱ´¶ûµÄÃûÑÔ£ºÇ°½ø°É£¬Äã»áµÃµ½ÐÅÐÄ!
[url="http://www.dimcax.com"]¼¸ºÎ³ß´çÓ빫²î±ê×¼[/url]
huangyhgÀëÏßÖÐ   »Ø¸´Ê±ÒýÓôËÌû
»Ø¸´


Ö÷Ì⹤¾ß ËÑË÷±¾Ö÷Ìâ
ËÑË÷±¾Ö÷Ìâ:

¸ß¼¶ËÑË÷
ÏÔʾģʽ

·¢Ìû¹æÔò
Äú²»¿ÉÒÔ·¢±íÐÂÖ÷Ìâ
Äú²»¿ÉÒԻظ´Ö÷Ìâ
Äú²»¿ÉÒÔÉÏ´«¸½¼þ
Äú²»¿ÉÒԱ༭ÄúµÄÌû×Ó

vB ´úÂ뿪Æô
[IMG]´úÂ뿪Æô
HTML´úÂë¹Ø±Õ



ËùÓеÄʱ¼ä¾ùΪ±±¾©Ê±¼ä¡£ ÏÖÔÚµÄʱ¼äÊÇ 07:58 AM.


ÓÚ2004Äê´´°ì£¬¼¸ºÎ³ß´çÓ빫²îÂÛ̳"ÖÂÁ¦ÓÚ²úÆ·¼¸ºÎÁ¿¹«²î±ê×¼GD&T | GPSÑо¿/CADÉè¼Æ/CAM¼Ó¹¤/CMM²âÁ¿"¡£ÃâÔðÉùÃ÷£ºÂÛ̳ÑϽû·¢²¼É«Çé·´¶¯ÑÔÂÛ¼°ÓйØÎ¥·´¹ú¼Ò·¨ÂÉ·¨¹æÄÚÈÝ£¡Çé½ÚÑÏÖØÕßÌṩÆäIP£¬²¢ÅäºÏÏà¹Ø²¿ÃŽøÐÐÑÏÀ÷²é´¦£¬ÈôƒÈÈÝÓÐÉæ¼°ÇÖȨ£¬ÇëÁ¢¼´ÁªÏµÎÒÃÇQQ:44671734¡£×¢£º´ËÂÛ̳Ðë¹ÜÀíÔ±ÑéÖ¤·½¿É·¢Ìû¡£
»¦ICP±¸06057009ºÅ-2
¸ü¶à