![]() |
ËùÓÐÊé¼®&Ë÷ÊéºÅ
1)¡¶Ë¼Ïë¹æÂɵÄÑо¿¡·¡¶An Investigation of the laws of Thought¡·Boole
2)¡¶ÎïÀíѧÖеÄȺÂÛ¡· ÂíÖÐæëÖø 3)¡¶Ê²Ã´ÊÇÊýѧ¡·¿ÂÀÊÖø 01-49/0282 Õâ±¾Êé½²ÊöÁËÊýѧµÄÕû¸ö·¢Õ¹¹ý³Ì£¬ÊÇÒ»±¾ÈëÃŽ̡̳£ 4)¡¶ÊýѧµÄÔÀíÓëʵ¼ù¡· o1-0/8699 5£©¡¶ÖØÎÂ΢»ý·Ö¡· ÆëÃñÓÑÖø o172/0274 6£©·ºº¯·ÖÎö½Ì³Ì o177/0131 7£©HermiteÕ¹¿ªÓë¹ãÒ庯Êý o177.4/1216 10£©Computational line geometry o123.3/P871 11£©Graph drawing software TP391.41/G766-1 12£©¡¶¼ÆËã»úͼÐÎѧ¡· ³£Ã÷Öø 13£©¼ÆËã»úͼÐÎѧ¡ª¡ª¼¸ºÎ¹¤¾ßËã·¨Ïê½â TP391.41/5042-2 ÕâÊÇÒ»±¾¹ØÓÚ¼¸ºÎͼÐÎËã·¨µÄ¹¤¾ßÊ飬дµÃ»¹ÊǺÜÏêϸµÄ¡£ 20£©¡¶Í¼ÂÛ¼òÃ÷½Ì³Ì¡· ͼÂÛÊÇ×éºÏÊýѧµÄÒ»¸ö·ÖÖ§ 21£©²¢ÐÐͼÂÛËã·¨ o157.5/0288 22£©È¤Î¶µÄͼÂÛÎÊÌâ o157.5-49/8541 23£©Í¼ÂÛ¼°ÆäËã·¨ o157.5/4224 |
»Ø¸´: ËùÓÐÊé¼®&Ë÷ÊéºÅ
ÒÔÉϾùΪÉϺ£Í¼Êé¹ÝµÄË÷ÊéºÅ£¬ºìÉ«±íʾÒѶÁ£¬À¶É«±íʾ´ý½èÖС£
1)¡¶Ë¼Ïë¹æÂɵÄÑо¿¡·¡¶An Investigation of the laws of Thought¡·Boole 2)¡¶ÎïÀíѧÖеÄȺÂÛ¡· ÂíÖÐæëÖø 3)¡¶Ê²Ã´ÊÇÊýѧ¡·¿ÂÀÊÖø 01-49/0282 Õâ±¾Êé½²ÊöÁËÊýѧµÄÕû¸ö·¢Õ¹¹ý³Ì£¬ÊÇÒ»±¾ÈëÃŽ̡̳£ 4)¡¶ÊýѧµÄÔÀíÓëʵ¼ù¡· o1-0/8699 5£©¡¶ÖØÎÂ΢»ý·Ö¡· ÆëÃñÓÑÖø o172/0274 6£©·ºº¯·ÖÎö½Ì³Ì o177/0131 7£©HermiteÕ¹¿ªÓë¹ãÒ庯Êý o177.4/1216 10£©Computational line geometry o123.3/P871 11£©Graph drawing software TP391.41/G766-1 12£©¡¶¼ÆËã»úͼÐÎѧ¡· ³£Ã÷Öø 13£©¼ÆËã»úͼÐÎѧ¡ª¡ª¼¸ºÎ¹¤¾ßËã·¨Ïê½â TP391.41/5042-2 ÕâÊÇÒ»±¾¹ØÓÚ¼¸ºÎͼÐÎËã·¨µÄ¹¤¾ßÊ飬дµÃ»¹ÊǺÜÏêϸµÄ¡£ 20£©¡¶Í¼ÂÛ¼òÃ÷½Ì³Ì¡· 21£©²¢ÐÐͼÂÛËã·¨ o157.5/0288 22£©È¤Î¶µÄͼÂÛÎÊÌâ o157.5-49/8541 23£©Í¼ÂÛ¼°ÆäËã·¨ o157.5/4224 |
»Ø¸´: ËùÓÐÊé¼®&Ë÷ÊéºÅ
1)×éºÏͼÂÛ
лÕþ ´÷Àö Öø ¹ú·À¿Æ¼¼´óѧ³ö°æÉç 2003Äê o157.5/3711 8·Ö 2£©Í¼ÂÛ¼°ÆäÓ¦Ó㨵ڶþ°æ£© ¬¿ª³Î ¬»ªÃ÷ Öø Ç廪´óѧ³ö°æÉç 1995Äê o157.5/2213-01 3·Ö £¨²»ÊʺÏÈëÃÅÓã© 3)³éÏó´úÊý»ù´¡ ÌÆÖÒÃ÷ Öø ¸ßµÈ½ÌÓý³ö°æÉç 2006Äê o153/0256 5·Ö £¨Ò»¶Ñ¸ÅÄ¼Ç²»×¡µÄÊ飩 4£©×ʱ¾Êг¡²©ÞÄÂÛ Âí¹ãÆæ Öø ÉϺ£²Æ¾´óѧ³ö°æÉç 2006Äê F830.9 7104 8·Ö £¨¶ÔÖйú¹ÉƱÊг¡·ÖÎö±È½Ï͸³¹µÄÊ飩 5)´úÊý¼¸ºÎ R.¹þ´Ä»ô¶÷ Öø ¿ÆÑ§³ö°æÉç 2001 Äê o187 6041 5·Ö £¨¿´²»ÏÂÈ¥µÄÊ飩 |
»Ø¸´: ËùÓÐÊé¼®&Ë÷ÊéºÅ
M.Kline£¬Mathematics-The Loss of Certainty, Oxford University Press,1980
ÖÐÎÄÒë±¾£ºÀîºê¿ýÒ룬Êýѧ£ºÈ·¶¨ÐÔµÄɥʧ£¬ºþÄÏ¿ÆÑ§¼¼Êõ³ö°æÉ磬1997 T.Dantzig,Number-The Language of Science, George Allen & Unwin Ltd,1938 ÖÐÎÄÒë±¾£ºËÕÖÙÏæÒ룬Êý£º¿ÆÑ§µÄÓïÑÔ£¬ÉϺ£½ÌÓý³ö°æÉ磬2000 |
»Ø¸´: ËùÓÐÊé¼®&Ë÷ÊéºÅ
¡¶¼¸ºÎÔ±¾¡·
¡¶¼¸ºÎ»ù´¡¡· |
»Ø¸´: ËùÓÐÊé¼®&Ë÷ÊéºÅ
5 ?ÄÒ×µ½ëy(ŸoÁĵ½ÓÐȤ) .. µÚÈý‚€ÊÇ×xÁËͶÙYˆó³êÂÊÒ²¾ÍÊÐ×xÁ˵ÄÔ’Œ¢?íµÄÓÐÓó̶ȵÚËÄ‚€ÊǽðӹСÕfÃܼ®µÄî?±È)
1 Îä®”éLÈ( »ù±¾¹¦·ò) Atiyah&McDonald µÄ Introduction to Commutative Algebra ºÍ Matsumura µÄ Commutative Algebra ÊÇ´ú”µŽ×ºÎÖдú”µ²¿·ÝµÄ±³¾°Öª×R. ƒÉ±¾•øÖ»ÖØÒ•´ú”µ¶ø²»Ìá¼°Ž×ºÎ,µ«µÚÒ»±¾•øµÄÁ•î}ÓкܶàÒý³öŽ×ºÎ±³ááÒâÁxµÄºÃ†–î}. ÊÂŒ?ÉÏÈκÎÒ»‚€½»“Q´ú”µµÄ¶¨Àí¶¼ÓЎ׺ÎÒâÁx. -----------------------------À§ëy¶ÈÒ×ȤζÐÔ ** ͶÙYˆó³êÂÊ ** 2 ÌÝë…¿v (¾šÁËÏëßMÄÄ‚€·ÖÖ§¶¼¿ÉÒÔ ...) Robin Hartshorne µÄ Algebraic Geometry ÊÇ´ú”µŽ×ºÎµÄ½›µä½Ì¿Æ•ø.ÈκÎÒ»‚€Äê¼o²»µ½ÎåÊ®µÄ´ú”µŽ×ºÎŒW¼Ò¶¼ÊÇŒWß@±¾•øéL´óµÄ. ß@±¾•øÊÇ Grothendick µÄ EGA ºÍ SGA Ò»²¿·ÖµÄÒ»‚€·Ç³£ÓÐϵ½yµÄ¿‚½Y. Grothendick µÄ•ø°üº¬µÄƒÈÈݺÜýRÈ«µ«ÊÇʧ춲»Œ?ëH: Ò²¾ÍÊÇÓ‘Õ“µÄŒ¦Ïóß^ì¶Ò»°ãÓÑ•r›]ÓЎ׺ÎÒâÁx, ß@Ò»ücÊ®·Ö²»ºÃ. µ«ÊÇ Hartshorne µÄ•ø°ÑÕû‚€ Grothendick µÄ Scheme ¾VîI×÷ÁËÒ»‚€×îÇ¡®”µÄÔ?áŒ.ß@±¾•øµÄÁ•î}Ò²·Ç³£ÖØÒª²»¹ÜŒ¢?팦Ë㔵Ž×ºÎ»òÑ}Ž×ºÎ»ò¸üÉîÈëµÄ´ú”µŽ×ºÎß@±¾•øµÄÁ•î}¶¼ÊÇÓÀßhÓÐÓõÄ. -----------------------------À§ëy¶ÈÖеÈȤζÐÔ * ͶÙYˆó³êÂÊ *** (PS: Hartshorne µÄ•øµÄ¾«ÈAÔÚ 123 ÕÂ, Æä45ÕÂŒ¦ì¶Èç¹û²»ÊÇ×öË㔵Ž×ºÎµÄÈËÊÇ›]ÓÐÓÃÌŽµÄ,ÓиüºÃµÄÌæ´úÓÕø) 3 Ò»Ì×ÎäÐg·þï—(ÐÐ×ß½ºþÒª´©Ò·þ) Gunning µÄ Lectures on Riemann surface »ò Forster »ò Farkas »ò Jost µÄ Riemann Surface: ÀèÂüÇúÃæÊÇÕæÕýµÄ”µŒW. ¸úÒ»ÇеĔµŒW·ÖÖ®¶¼ÓÐÖØ´óêP‚S. ÉÏÊöËÄ‚€×÷Õߵĕø¶¼ÓÐÏà®”Éî¶È. ÎÒÖ»†ˆß^ Gunning µÄ, ÊÇÒ»±¾±ÈÝ^ÖØÒ•"ÉÏͬÕ{Ⱥ" µÄºÃ•ø. ÆäËûŽ×±¾ÓÖ»òÖØÒ•ÀèÂüÃæµÄ hyperbolic geometry »ò automorphism »ò special linear series. ¶¼·Ç³£ÓÐÒâ˼. ºÜ¶àÈË ,ÓÈÆäÊÇÖЇøÈË߀ϲšgÎéø™ìûŒ‘µÄÀèÂüÇúÃæÒýÕ“. µ«ÎÒ?K²»ÊǷdz£Ï²šg. -------------------------------À§ëy¶ÈÒ×ȤζÐÔ *** ͶÙYˆó³êÂÊ 0 4 È«ÕæÅÉ»ù±¾ƒÈ¹¦(Ò»¶¨Òª¾š) Griffith& Haris µÄ Principles in Algebraic Geometry. ß@±¾•øÊǽ›µäÖеĽ›µä.ÊÇÑ}Ž×ºÎµÄ»ù±¾½Ì²Ä. ß@±¾•øµÄÿһÕ¶¼ºÜ°ô. µÚÒ»ÕÂÊÇHodge ÀíÕ“..Êǎ׺ÎÖÐ×îÉîŠWµÄÀíÕ“. µÚ¶þÕÂÊÇKodaira ǶÈ붨ÀíÑ}Á÷ÐеÄǶÈë±ÈŒ?Á÷ÐεÄǶÈëÓÐȤ¶àÁË. µÚÈýÕÂÊÇ current ºÍ spectral sequence, ÊǺÜÖØÒªµÄ¹¤¾ß. µÚËÄÕÂÊÇÇúÃæÕ“ . Œ‘µÄºÜÔ”±Mµ«ÊÇÓиüºÃµÄ•ø(ÒŠ6). µÚÎå?ˆÊÇÌØÊ⌣î}Œ¦´üÊóŽ×ºÎÖв»Í¬·½ÏòµÄÈËÓв»Í¬¹¦ÓÃ. -------------------------------À§ëy¶ÈÖеÈȤζÐÔ **** ͶÙYˆó³êÂÊ **** ×ªÔØ×Ô£¢www.math.org.cn ×÷ÕßQuillen¡¡ÌâĿ׌ÎÒ?í°l´ú”µŽ×ºÎ…¢¿¼•ø£¢ 5 ¾Åê–Éñ¹¦ Barth & Hulek & Peters µÄ Compact complex surfaces. ß@±¾•øÊǽ›µäÖеĽ›µäÖеĽ›µä. ÖvµÄÊÇ´ú”µÇúÃæµÄ¸÷·NŒ£î}. ÿ‚€Õ¹?¶¼Œ‘µÄŸoÏÞÍêÃÀ. ¿ÉÒÔÕfÈç¹ûŒW´ú”µŽ×ºÎ›]†ˆß^ß@±¾•ø. ÉõÖÁÊÇŒWŽ×ºÐ›]†ˆß^ß@±¾•ø..¿ÉÒÔ¿¼‘]“QÐÐ.ÊǰÙÄêëyµÃÒ»ÒŠµÄºÃ•ø. ÎÒ‚€ÈËÒÔžé´Ë•øÐ°æµÄ×îááƒÉ?ˆŒ‘µÄÓÈÆäºÃ. Ò»ÊÇ K3 ÇúÃæÁíÒ»‚€ÊÇ Doanaldson ºÍ Seiber Witten ÀíÕ“. ¬FÔÚ¶¼ÊÇŸoÏÞŸáéTµÄŒ£î}. -------------------------------À§ëy¶ÈÖеÈȤζÐÔ ***** ͶÙYˆó³êÂÊ ***** 6 ÉÙÁÖÅÉÁ_?hÈ(¿ÉÒÔ¾š¾š,Èç¹û›]ÊÂ) Robert Friedman µÄ Algebraic Surfaces and Holomorphic Vector Bundles ß@±¾•øÊÇÖvÇúÃæºÍÉÏÃæµÄÏòÁ¿…². ÇúÃæµÃ²¿·ÖÖvµÃÓÐüc?y,ÊÂŒ?ÉÏ›]ÓÐÈ˰ÑÇúÃæÖvµÄ±È Barth ߀ºÃµÄ. ÏòÁ¿…²µÃ²¿·ÖÖµµÃÒ»¿´. --------------------------------À§ëy¶ÈÒ×ȤζÐÔ * ͶÙYˆó³êÂÊ *** 7 ÎüÐÇ´ó·¨ (¾šÍê¾Í¿ÉÒÔÎüȡ΢·ÖÍØ‰?ŒW¼ÒµÄƒÈ¹¦ÒԞ鼺ÓÃ) Donaldson & Kroheimer µÄ The Geometry of Four manifold. ß@ÊÇ΢·ÖÍØ‰?ÖеÄÂ}½›.ƒÉÈ˶¼ÊÇ´ó¼Ò. ´Ë•øÒý³öÁËËľSÁ÷Ð뵀 Gauge Invariant (ÒŽ¹ ²»×ƒÁ¿), ¶øÑ}ÇúÃæÊÇËľSÁ÷ÐÎÖеÄÒ»´óî? ..Òò´ËÒ²ÊÇ´ú”µŽ×ºÎµÄºÃ•ø. --------------------------------À§ëy¶ÈëyȤζÐÔ ***** ͶÙYˆó³êÂÊ 0 (±¾•øÐ§ÒæÔÚÎåÊ®Äêáá) 8 ǬÀ¤´óÅ²ÒÆ (¾šµ½Ò»°ë¾Í‰ò?ŠÁËÈ«²¿¾šÍêÄãÒ²ÍÂѪ¶øÍö) John Morgan ºÍ Robert Friedman µÄ Smooth four manifold and Complex surfaces. ß@±¾•øÖvµÃÊÇ™EˆAÇúÃæºÍÆäÉÏÃæDonaldson ÒŽ¹ ²»×ƒÁ¿ÀíÕ“.×÷ÕßÀûÓôËÀíÕ“µÃµ½ÁËÇúÃæµÄÒ»‚€´ó¶¨Àí, ×CÃ÷ÁË×î¶àÖ»ÄÜÓÐÓÐÏÞ‚€Ñ}׃ÐÎî?¹²ÓÃÒ»‚€Î¢·Ö½Y˜‹. ÊÇÒ»±¾ºÜŒ£éTµÄ•øÎÒ߀ÔÚŬÁ¦ŒWÁ•. ---------------------------------À§ëy¶È˜OëyȤζÐÔ **** ͶÙYˆó³êÂÊ ** 9 ½îÈâÈËºÍ¼Ó·ÆØˆµÄŸo”³ïL»ð݆ (¾šÇ°ÕˆÈý˼) Haris µÄ The Geometry of Algebraic Crves. ÊǷdz£·Ç³£ªMÔ×µÄîIÓò. Ñо¿µÄÊÇ´ú”µÇú¾€ÉϵÄÌØÊâ¾€ÐÔϵ½y. ·Ç³£ëy†ˆµÄÒ»±¾•ø.†ˆÍêááµÄÓÃÌŽÒ²²»¶à..µ«ÊÇ¿ÉÒԳɞéÒ»‚€´ú”µÇú¾€µÄŒ£¼Ò. -------------------------------À§ëy¶È˜OëyȤζÐÔ * ͶÙYˆó³êÂÊ *** 10 ÎåªzÅÉ„¦·¨ (ÓÐÓÃÌŽµ«ÊÇÏà®”ës?y.Æ´Æ´œ?œ?) Joe Harris & David Morrison µÄ Moduli of Curves ß@ÊÇÖvÇú¾€µÄÄ£¿ÕégµÄ½›µä.µ«ÎÒ?K²»ÄÇüNϲšg. ÑeÃæÓÐ Enumerative Geometry (Ó›”µŽ×ºÎ) µÄÒ»‚€ÒýÕ“. ÓÐÇú¾€Ä£¿ÕégÉϵÄÏཻ”µºÍ¸÷·NÐÔÙ|.- --------------------------------À§ëy¶ÈÖеÈȤζÐÔ ** ͶÙYˆó³êÂÊ ***** 11 ¾ÅêŽÕæ½› (¾šÍêáá¿ÉÒÔé_Ê¼ÕæÕýÑо¿†–î}) John Morgan ºÍ Robert Friedman µÄ Gauge Theory and the Topology of Four-Manifolds. ÑeÃæÓÐGieseker Œ‘Ž×ºÎ²»×ƒÁ¿ÀíÕ“. ÀîòEµÄ Uhlenbeck ¾o»¯ºÍ Gesieker¾o»¯µÄ±ÈÝ^¶¨Àí. Morgan Ó‘Õ“ Donaldson ÒŽ¹ ²»×ƒÁ¿ºÍ¸ü¶àÈËŒ¦´ËÁ¿. -----------------------------------À§ëy¶ÈÖеÈȤζÐÔ ***** ͶÙYˆó³êÂÊ ***** µÄÓ‹Ëã½Y¹û. 12 Ì«˜OÈ (°lÕ¹ŸoÏÞ) Daniel Huybrecht µÄ The Geoemtry of Moduli Space of Sheaves. ÊÇÏòÁ¿…²Ä£¿ÕégµÄ½›µäÓÕø. µÚ¶þ²¿·ÖÓдˌW¿Æ×îÏÈßMµÄ½Y¹û. ¸÷Õµĸ½ä›¶¼ÓкÜÖØÒªÓÖÓÐȤµÄ½Y¹û. -----------------------------------À§ëy¶ÈëyȤζÐÔ *** ͶÙYˆó³êÂÊ ***** 13 MK47 ²½˜Œ Joyce, Gross & Huybrecht µÄ Calabi-Yau Manifolds and Related Geometries. ÊÇ×îÐ嵀 Mirror symmetry µÄŒ£î}•ø. ÖvCalabi Yau Á÷Ðεĸ÷·NÏàêP†–î}. ÓÐYau ½â›Q Calabi ²ÂÏëµÄ¸ÅÊö. ÓÐ Mirror ²ÂÏëºÍ SYZ (Strominger& Yau& Zaslow) ²ÂÏë. ߀ÓÐ HyperKaeler Á÷ÐÎÐÔÙ|µÄÓ‘Õ“.ß@ÊǶþÊ®ÊÀ¼oµÄ”µŒW. ------------------------------------À§ëy¶ÈÖеÈȤζÐÔ ***** ͶÙYˆó³êÂÊ ***** 14 ™CêP˜Œ (¿ÉÒÔ“ŒãyÐÐ) Pandharipande, Sheldon Katz, Hori... һȺÈ˺ό‘µÄ Mirror Symmetry . ³ýÁË Mirror conjecture ÔÚÎå´ÎÈý΢Á÷ÐÎ(quintic three fold )µÄ×CÃ÷Íâ, ߀°üÀ¨ÁË Gopakuma Vafa ²ÂÏë, Homological Mirror Symmetry ²ÂÏë, ÉõÖÁMirror Symmetry µÄÔ´î^: ¸ßÄÜÎïÀíÖеÄÏÒÕ“ºÍ±£½ÇˆöÕ“, È«¶¼ÓÉŒ£¼ÒˆÌ¹P.. ?Äëyµ½Ò×..ÎÒ¬FÔÚÒ²ÔÚé]êPÐÞ¾šÖÐ. -------------------------------------À§ëy¶È˜Oëy(ÎïÀí²¿·Ö) ȤζÐÔ ***** ͶÙYˆó³êÂÊ ***** 15 Ô×Ó?—( ...................) Griffith µÄ Topics in Trascendental Geometry ÊÇ»ôÆæ½Y˜‹(Hodge structure) µÄÒ»±¾½›µä•ø. ÔÚ1985Äê×óÓÒÓÐÒ»´óƱ”µŒW¼ÒÏë½â›Q»ôÆæ²ÂÏë (›]åe¾ÍÊÇÄÇ‚€Ò»°ÙÈf†–î}).Ëý‚ƒëmÈ»›]Óнâ³ö?íµ«Œ¦²ÂÏëÓкÜÉîÈëµÄÁ˽â . ±¾•øÊÇËý‚ƒ¹¤×÷µÄº†Êö. ÊÇÒ»±¾ëy×x…sºÜÖµµÃ×xµÄ•ø. -------------------------------------- À§ëy¶È˜OëyȤζÐÔ ********************** ͶÙYˆó³êÂÊ ************************* ÁíÍâ߀ÓЎױ¾•ø›]Óнé½B..±ÈÈçÕfMori µÄÈýžéÑ}Á÷Ð뵀 Minimal Model Programm ÓÐºÜ¶àŒ£•ø..µ«ÊÇÒòžéß@‚€†–î}Òѽ›±»Ê’ÊaÌÃÒÔ¼°ÆäËûËÄ‚€Íâ‡øÈ˽â›Q (ËùÓоS¶È) ÆäͶÙYˆó³êÂÊÒѽ›ÊÇØ“µÄÁË. ÓÖ»òÊÇ£®£®£® |
ËùÓеÄʱ¼ä¾ùΪ±±¾©Ê±¼ä¡£ ÏÖÔÚµÄʱ¼äÊÇ 04:43 AM. |