![]() |
【转帖】c#线程
1)线程简介
单个写入程序/多个阅读程序在.Net类库中其实已经提供了实现,即System.Threading.ReaderWriterLock类。本文通过对常见的单个写入/多个阅读程序的分析来探索c#的多线程编程。 问题的提出 所谓单个写入程序/多个阅读程序的线程同步问题,是指任意数量的线程访问共享资源时,写入程序(线程)需要修改共享资源,而阅读程序(线程)需要读取数据。在这个同步问题中,很容易得到下面二个要求: 1) 当一个线程正在写入数据时,其他线程不能写,也不能读。 2) 当一个线程正在读入数据时,其他线程不能写,但能够读。 在数据库应用程序环境中经常遇到这样的问题。比如说,有n个最终用户,他们都要同时访问同一个数据库。其中有m个用户要将数据存入数据库,n-m个用户要读取数据库中的记录。 很显然,在这个环境中,我们不能让两个或两个以上的用户同时更新同一条记录,如果两个或两个以上的用户都试图同时修改同一记录,那么该记录中的信息就会被破坏。 我们也不让一个用户更新数据库记录的同时,让另一用户读取记录的内容。因为读取的记录很有可能同时包含了更新和没有更新的信息,也就是说这条记录是无效的记录。 实现分析 规定任一线程要对资源进行写或读操作前必须申请锁。根据操作的不同,分为阅读锁和写入锁,操作完成之后应释放相应的锁。将单个写入程序/多个阅读程序的要求改变一下,可以得到如下的形式: 一个线程申请阅读锁的成功条件是:当前没有活动的写入线程。 一个线程申请写入锁的成功条件是:当前没有任何活动(对锁而言)的线程。 因此,为了标志是否有活动的线程,以及是写入还是阅读线程,引入一个变量m_nActive,如果m_nActive > 0,则表示当前活动阅读线程的数目,如果m_nActive=0,则表示没有任何活动线程,m_nActive <0,表示当前有写入线程在活动,注意m_nActive<0,时只能取-1的值,因为只允许有一个写入线程活动。 为了判断当前活动线程拥有的锁的类型,我们采用了线程局部存储技术(请参阅其它参考书籍),将线程与特殊标志位关联起来。 申请阅读锁的函数原型为:public void AcquireReaderLock( int millisecondsTimeout ),其中的参数为线程等待调度的时间。函数定义如下: public void AcquireReaderLock( int millisecondsTimeout ) { // m_mutext很快可以得到,以便进入临界区 m_mutex.WaitOne( ); // 是否有写入线程存在 bool bExistingWriter = ( m_nActive < 0 ); if( bExistingWriter ) { //等待阅读线程数目加1,当有锁释放时,根据此数目来调度线程 m_nWaitingReaders++; } else { //当前活动线程加1 m_nActive++; } m_mutex.ReleaseMutex(); //存储锁标志为Reader System.LocalDataStoreSlot slot = Thread.GetNamedDataSlot(m_strThreadSlotName); object obj = Thread.GetData( slot ); LockFlags flag = LockFlags.None; if( obj != null ) flag = (LockFlags)obj ; if( flag == LockFlags.None ) { Thread.SetData( slot, LockFlags.Reader ); } else { Thread.SetData( slot, (LockFlags)((int)flag | (int)LockFlags.Reader ) ); } if( bExistingWriter ) { //等待指定的时间 this.m_aeReaders.WaitOne( millisecondsTimeout, true ); } } 它首先进入临界区(用以在多线程环境下保证活动线程数目的操作的正确性)判断当前活动线程的数目,如果有写线程(m_nActive<0)存在,则等待指定的时间并且等待的阅读线程数目加1。如果当前活动线程是读线程(m_nActive>=0),则可以让读线程继续运行。 申请写入锁的函数原型为:public void AcquireWriterLock( int millisecondsTimeout ),其中的参数为等待调度的时间。函数定义如下: public void AcquireWriterLock( int millisecondsTimeout ) { // m_mutext很快可以得到,以便进入临界区 m_mutex.WaitOne( ); // 是否有活动线程存在 bool bNoActive = m_nActive == 0; if( !bNoActive ) { m_nWaitingWriters++; } else { m_nActive--; } m_mutex.ReleaseMutex(); //存储线程锁标志 System.LocalDataStoreSlot slot = Thread.GetNamedDataSlot( "myReaderWriterLockDataSlot" ); object obj = Thread.GetData( slot ); LockFlags flag = LockFlags.None; if( obj != null ) flag = (LockFlags)Thread.GetData( slot ); if( flag == LockFlags.None ) { Thread.SetData( slot, LockFlags.Writer ); } else { Thread.SetData( slot, (LockFlags)((int)flag | (int)LockFlags.Writer ) ); } //如果有活动线程,等待指定的时间 if( !bNoActive ) this.m_aeWriters.WaitOne( millisecondsTimeout, true ); } 它首先进入临界区判断当前活动线程的数目,如果当前有活动线程存在,不管是写线程还是读线程(m_nActive),线程将等待指定的时间并且等待的写入线程数目加1,否则线程拥有写的权限。 释放阅读锁的函数原型为:public void ReleaseReaderLock()。函数定义如下: public void ReleaseReaderLock() { System.LocalDataStoreSlot slot = Thread.GetNamedDataSlot(m_strThreadSlotName ); LockFlags flag = (LockFlags)Thread.GetData( slot ); if( flag == LockFlags.None ) { return; } bool bReader = true; switch( flag ) { case LockFlags.None: break; case LockFlags.Writer: bReader = false; break; } if( !bReader ) return; Thread.SetData( slot, LockFlags.None ); m_mutex.WaitOne(); AutoResetEvent autoresetevent = null; this.m_nActive --; if( this.m_nActive == 0 ) { if( this.m_nWaitingReaders > 0 ) { m_nActive ++ ; m_nWaitingReaders --; autoresetevent = this.m_aeReaders; } else if( this.m_nWaitingWriters > 0) { m_nWaitingWriters--; m_nActive --; autoresetevent = this.m_aeWriters ; } } m_mutex.ReleaseMutex(); if( autoresetevent != null ) autoresetevent.Set(); } 释放阅读锁时,首先判断当前线程是否拥有阅读锁(通过线程局部存储的标志),然后判断是否有等待的阅读线程,如果有,先将当前活动线程加1,等待阅读线程数目减1,然后置事件为有信号。如果没有等待的阅读线程,判断是否有等待的写入线程,如果有则活动线程数目减1,等待的写入线程数目减1。释放写入锁与释放阅读锁的过程基本一致,可以参看源代码。 注意在程序中,释放锁时,只会唤醒一个阅读程序,这是因为使用AutoResetEvent的原历,读者可自行将其改成ManualResetEvent,同时唤醒多个阅读程序,此时应令m_nActive等于整个等待的阅读线程数目。 测试程序取自.Net FrameSDK中的一个例子,只是稍做修改。测试程序如下, using System; using System.Threading; using MyThreading; class Resource { myReaderWriterLock rwl = new myReaderWriterLock(); public void Read(Int32 threadNum) { rwl.AcquireReaderLock(Timeout.Infinite); try { Console.WriteLine("Start Resource reading (Thread={0})", threadNum); Thread.Sleep(250); Console.WriteLine("Stop Resource reading (Thread={0})", threadNum); } finally { rwl.ReleaseReaderLock(); } } public void Write(Int32 threadNum) { rwl.AcquireWriterLock(Timeout.Infinite); try { Console.WriteLine("Start Resource writing (Thread={0})", threadNum); Thread.Sleep(750); Console.WriteLine("Stop Resource writing (Thread={0})", threadNum); } finally { rwl.ReleaseWriterLock(); } } } class App { static Int32 numAsyncOps = 20; static AutoResetEvent asyncOpsAreDone = new AutoResetEvent(false); static Resource res = new Resource(); public static void Main() { for (Int32 threadNum = 0; threadNum < 20; threadNum++) { ThreadPool.QueueUserWorkItem(new WaitCallback(UpdateResource), threadNum); } asyncOpsAreDone.WaitOne(); Console.WriteLine("All operations have completed."); Console.ReadLine(); } // The callback method's signature MUST match that of a System.Threading.TimerCallback // delegate (it takes an Object parameter and returns void) static void UpdateResource(Object state) { Int32 threadNum = (Int32) state; if ((threadNum % 2) != 0) res.Read(threadNum); else res.Write(threadNum); if (Interlocked.Decrement(ref numAsyncOps) == 0) asyncOpsAreDone.Set(); } } 从测试结果中可以看出,可以满足单个写入程序\多个阅读程序的实现要求。 |
回复: 【转帖】c#线程
2)简单example
使用线程创建 Visual C# .NET 应用程序 启动 Microsoft Visual Studio .NET。 新建名为 ThreadWinApp 的 Visual C# .NET Windows 应用程序项目。 向窗体添加一个“Button”控件。默认情况下,该按钮名为“Button1”。 向窗体添加一个“ProgressBar”组件。默认情况下,该进度栏名为“ProgressBar1”。 右键单击该窗体,然后单击“查看代码”。 将以下语句添加到文件的开头:using System.Threading; 为“Button1”添加以下“Click”事件处理程序:private void button1_Click(object sender, System.EventArgs e) { MessageBox.Show("This is the main thread"); } 将下面的变量添加到 Form1 类:private Thread trd; 将下面的方法添加到 Form1 类:private void ThreadTask() { int stp; int newval; Random rnd=new Random(); while(true) { stp=this.progressBar1.Step*rnd.Next(-1,2); newval = this.progressBar1.Value + stp; if (newval > this.progressBar1.Maximum) newval = this.progressBar1.Maximum; else if (newval < this.progressBar1.Minimum) newval = this.progressBar1.Minimum; this.progressBar1.Value = newval; Thread.Sleep(100); } } 注意:这是创建线程的基础代码。此段代码是一个无限循环,它随机增加或减小“ProgressBar1”中的值,然后等待 100 毫秒后再继续。 为“Form1”添加以下 Load 事件处理程序。此段代码将新建一个新线程,使该线程成为后台线程,然后启动该线程。private void Form1_Load(object sender, System.EventArgs e) { Thread trd = new Thread(new ThreadStart(this.ThreadTask)); trd.IsBackground = true; trd.Start(); } 返回页首 确认它可以使用 生成并运行该应用程序。请注意,“ProgressBar1”中的值会随机更改。这是新线程在起作用。 要演示主线程独立于更改“ProgressBar1”值的线程,请单击窗体上的按钮。会出现一个对话框,其中显示下面的错误信息:This is the main thread Wait for input.请注意,“ProgressBar1”中的值会继续更改。 |
回复: 【转帖】c#线程
3)example 2
以前在使用VB来实现多线程的时候,发现有一定的难度。虽然也有这样那样的方法,但都不尽人意,但在C#中,要编写多线程应用程序却相当的简单。这篇文章将作简要的介绍,以起到抛砖引玉的作用! .NET将关于多线程的功能定义在System.Threading名字空间中。因此,要使用多线程,必须先声明引用此名字空间(using System.Threading;)。 即使你没有编写多线程应用程序的经验,也可能听说过“启动线程”“杀死线程”这些词,其实除了这两个外,涉及多线程方面的还有诸如“暂停线程”“优先级”“挂起线程”“恢复线程”等等。下面将一个一个的解释。 a.启动线程 顾名思义,“启动线程”就是新建并启动一个线程的意思,如下代码可实现: Thread thread1 = new Thread(new ThreadStart( Count)); 其中的 Count 是将要被新线程执行的函数。 b.杀死线程 “杀死线程”就是将一线程斩草除根,为了不白费力气,在杀死一个线程前最好先判断它是否还活着(通过 IsAlive 属性),然后就可以调用 Abort 方法来杀死此线程。 c.暂停线程 它的意思就是让一个正在运行的线程休眠一段时间。如 thread.Sleep(1000); 就是让线程休眠1秒钟。 d.优先级 这个用不着解释了。Thread类中有一个ThreadPriority属性,它用来设置优先级,但不能保证操作系统会接受该优先级。一个线程的优先级可分为5种:Normal, AboveNormal, BelowNormal, Highest, Lowest。具体实现例子如下: thread.Priority = ThreadPriority.Highest; e.挂起线程 Thread类的Suspend方法用来挂起线程,知道调用Resume,此线程才可以继续执行。如果线程已经挂起,那就不会起作用。 if (thread.ThreadState = ThreadState.Running) { thread.Suspend(); } f.恢复线程 用来恢复已经挂起的线程,以让它继续执行,如果线程没挂起,也不会起作用。 if (thread.ThreadState = ThreadState.Suspended) { thread.Resume(); } 下面将列出一个例子,以说明简单的线程处理功能。此例子来自于帮助文档。 using System; using System.Threading; // Simple threading scenario: Start a static method running // on a second thread. public class ThreadExample { // The ThreadProc method is called when the thread starts. // It loops ten times, writing to the console and yielding // the rest of its time slice each time, and then ends. public static void ThreadProc() { for (int i = 0; i < 10; i++) { Console.WriteLine("ThreadProc: {0}", i); // Yield the rest of the time slice. Thread.Sleep(0); } } public static void Main() { Console.WriteLine("Main thread: Start a second thread."); // The constructor for the Thread class requires a ThreadStart // delegate that represents the method to be executed on the // thread. C# simplifies the creation of this delegate. Thread t = new Thread(new ThreadStart(ThreadProc)); // Start ThreadProc. On a uniprocessor, the thread does not get // any processor time until the main thread yields. Uncomment // the Thread.Sleep that follows t.Start() to see the difference. t.Start(); //Thread.Sleep(0); for (int i = 0; i < 4; i++) { Console.WriteLine("Main thread: Do some work."); Thread.Sleep(0); } Console.WriteLine("Main thread: Call Join(), to wait until ThreadProc ends."); t.Join(); Console.WriteLine("Main thread: ThreadProc.Join has returned. Press Enter to end program."); Console.ReadLine(); } } 此代码产生的输出类似如下内容: Main thread: Start a second thread. Main thread: Do some work. ThreadProc: 0 Main thread: Do some work. ThreadProc: 1 Main thread: Do some work. ThreadProc: 2 Main thread: Do some work. ThreadProc: 3 Main thread: Call Join(), to wait until ThreadProc ends. ThreadProc: 4 ThreadProc: 5 ThreadProc: 6 ThreadProc: 7 ThreadProc: 8 ThreadProc: 9 Main thread: ThreadProc.Join has returned. Press Enter to end program. |
所有的时间均为北京时间。 现在的时间是 02:37 AM. |