几何尺寸与公差论坛

 找回密码
 注册
查看: 3952|回复: 3

问拓扑的意义?

[复制链接]
发表于 2007-1-27 22:28:24 | 显示全部楼层 |阅读模式
问拓扑的意义?

拓扑旨在于研究几何模型的连续性质。
内容比较长,有什么意见尽管提。写这一大段的目的是希望和大家一起提高对拓扑的理解,并能进一步的把那些高水平的书看下去,从而不至于把一些本来很美的概念看得没头没脑不知来龙去脉。Thank you.

要想理解拓扑这个概念,必须要对这个概念的直观意义有一定的了解,因为拓扑概念自身就是起源于它的直观意义,数学家们把它的直观意义用精确的数学语言表达出来,就形成了它的定义。

这种直观意义是什么呢?我想从一个例子来说应该更好理解一些。在一个半球面的赤道的最右面的点叫P,最左面的点叫P'。显然半球面和平面在某种性质上是属于同一类的(即它们同胚)。这时,如果我们在考虑建立在这种几何模型基础上的某一个问题时发现P点和P'点在另一种意义上似乎表现为一种相邻的性质时,好奇心就会促使我们去研究把P点和P'点连到一起的这种几何体上P点(或P'点)周围的这种连续性质。比如:函数f(x)的自变量在赤道上取值,当 x --> P 时,f(x)的值从大到小趋向于实数a;而当 x --> P' 时,f(x)的值从小到大趋向于实数a,就好像当你站在这个半球面的赤道上从某点走向P点,到达P点时突然到达了P'点再向前走去这个过程中函数f(x)连续。这时,有修养的数学家就会去考虑怎样用精确的数学语言描述他所遇到的这种跨域连续的情况:包括跨域连续的函数以及跨域连通的几何体。

实际上,这种现象在历史上从19世纪初期就有好多数学家注意到了,但由于当时集合论水平的限制,这种概念却迟至20世纪初期才得到严格的表述,表述方法就是把P点周围的点集和P'点周围的点集并起来,并将P点和P'点看作同一个点,从而形成包含P点(或P'点)的一个新的点集,这个点集就是现今拓扑学课本上所说的包含P点的一个开集。如果在所有纬线上进行上述操作,那么把半球面上所有能够体现跨域连续性质的点的邻域都用能用以上方法构造的一切集合(开集)来表示,这就形成了一系列这种集合,这些集合的集合就叫半球面的一个拓扑,拓扑这个概念就是为了表述直观上的跨域连续性质而创造的。正是由于上面构造的这个拓扑,才使拥有这个拓扑的半球面实质上就是一个球面。而在通常意义下的半球面和平面,都是赋予了按照通常意义下的邻域构造的拓扑的一个集合,这个拓扑叫自然拓扑,它与上面构造的拓扑不一样,因此,在同一个集合上赋予不同的拓扑会导致不同的几何构形。

然后,数学家们就在集合上利用拓扑这个概念定义了直观的跨域连续这种思想的精确的数学概念:拓扑学课本中讨论的连续

既然在同一个集合上赋予不同的拓扑会导致不同的几何构形,那么人们自然会想到对这些不同的几何构形进行分类,而分类的标准就是:它们是不是拥有相同的拓扑。把具有相同拓扑的几何构形化归同一类,并称它们同胚,同胚关系就是对应于这种分类的等价关系。由于可以证明:两个几何体同胚的充要条件是在这两个几何体之间存在一个一一对应,双方连续的映射,因此就定义这种映射叫同胚映射,也简称同胚。

根本地说,拓扑学就是研究几何体在同胚映射下的不变性质的一个数学分支。用微分几何和范畴论的观点来说,其根本问题就是研究C^0流形上的同构,尽管我们平时见到的问题看起来不是这些。
发表于 2007-1-28 15:04:17 | 显示全部楼层

回复: 问拓扑的意义?

什么是拓扑学?

拓扑学的英文名是Topology,直译是地志学,也就是和研究地形、地貌相类似的有关学科。我国早期曾经翻译成“形势几何学”、“连续几何学”、“一对一的连续变换群下的几何学”,但是,这几种译名都不大好理解,1956年统一的《数学名词》把它确定为拓扑学,这是按音译过来的。

拓扑学是几何学的一个分支,但是这种几何学又和通常的平面几何、立体几何不同。通常的平面几何或立体几何研究的对象是点、线、面之间的位置关系以及它们的度量性质。拓扑学对于研究对象的长短、大小、面积、体积等度量性质和数量关系都无关。

举例来说,在通常的平面几何里,把平面上的一个图形搬到另一个图形上,如果完全重合,那么这两个图形叫做全等形。但是,在拓扑学里所研究的图形,在运动中无论它的大小或者形状都发生变化。在拓扑学里没有不能弯曲的元素,每一个图形的大小、形状都可以改变。例如,前面讲的欧拉在解决哥尼斯堡七桥问题的时候,他画的图形就不考虑它的大小、形状,仅考虑点和线的个数。这些就是拓扑学思考问题的出发点。

拓扑性质有那些呢?首先我们介绍拓扑等价,这是比较容易理解的一个拓扑性质。

在拓扑学里不讨论两个图形全等的概念,但是讨论拓扑等价的概念。比如,尽管圆和方形、三角形的形状、大小不同,在拓扑变换下,它们都是等价图形。左图的三样东西就是拓扑等价的,换句话讲,就是从拓扑学的角度看,它们是完全一样的。

在一个球面上任选一些点用不相交的线把它们连接起来,这样球面就被这些线分成许多块。在拓扑变换下,点、线、块的数目仍和原来的数目一样,这就是拓扑等价。一般地说,对于任意形状的闭曲面,只要不把曲面撕裂或割破,他的变换就是拓扑变幻,就存在拓扑等价。

应该指出,环面不具有这个性质。比如像左图那样,把环面切开,它不至于分成许多块,只是变成一个弯曲的圆桶形,对于这种情况,我们就说球面不能拓扑的变成环面。所以球面和环面在拓扑学中是不同的曲面。

直线上的点和线的结合关系、顺序关系,在拓扑变换下不变,这是拓扑性质。在拓扑学中曲线和曲面的闭合性质也是拓扑性质。

我们通常讲的平面、曲面通常有两个面,就像一张纸有两个面一样。但德国数学家莫比乌斯(1790~1868)在1858年发现了莫比乌斯曲面。这种曲面就不能用不同的颜色来涂满两个侧面。

拓扑变换的不变性、不变量还有很多,这里不在介绍。

拓扑学建立后,由于其它数学学科的发展需要,它也得到了迅速的发展。特别是黎曼创立黎曼几何以后,他把拓扑学概念作为分析函数论的基础,更加促进了拓扑学的进展。

二十世纪以来,集合论被引进了拓扑学,为拓扑学开拓了新的面貌。拓扑学的研究就变成了关于任意点集的对应的概念。拓扑学中一些需要精确化描述的问题都可以应用集合来论述。

因为大量自然现象具有连续性,所以拓扑学具有广泛联系各种实际事物的可能性。通过拓扑学的研究,可以阐明空间的集合结构,从而掌握空间之间的函数关系。本世纪三十年代以后,数学家对拓扑学的研究更加深入,提出了许多全新的概念。比如,一致性结构概念、抽象距概念和近似空间概念等等。有一门数学分支叫做微分几何,是用微分工具来研究取线、曲面等在一点附近的弯曲情况,而拓扑学是研究曲面的全局联系的情况,因此,这两门学科应该存在某种本质的联系。1945 年,美籍中国数学家陈省身建立了代数拓扑和微分几何的联系,并推进了整体几何学的发展。

拓扑学发展到今天,在理论上已经十分明显分成了两个分支。一个分支是偏重于用分析的方法来研究的,叫做点集拓扑学,或者叫做分析拓扑学。另一个分支是偏重于用代数方法来研究的,叫做代数拓扑。现在,这两个分支又有统一的趋势。

拓扑学在泛函分析、李群论、微分几何、微分方程额其他许多数学分支中都有广泛的应用。
发表于 2007-2-8 22:39:22 | 显示全部楼层

回复: 问拓扑的意义?

shortcut to http://www.dimcax.com/topology.html
——初中数学里的拓扑形象描述(例图)。
发表于 2007-2-27 22:51:48 | 显示全部楼层

回复: 问拓扑的意义?

拓扑学的由来

几何拓扑学是十九世纪形成的一门数学分支,它属于几何学的范畴。有关拓扑学的一些内容早在十八世纪就出现了。那时候发现一些孤立的问题,后来在拓扑学的形成中占着重要的地位。

在数学上,关于哥尼斯堡七桥问题、多面体的欧拉定理、四色问题等都是拓扑学发展史的重要问题。

哥尼斯堡(今俄罗斯加里宁格勒)是东普鲁士的首都,普莱格尔河横贯其中。十八世纪在这条河上建有七座桥,将河中间的两个岛和河岸联结起来。人们闲暇时经常在这上边散步,一天有人提出:能不能每座桥都只走一遍,最后又回到原来的位置。这个问题看起来很简单有很有趣的问题吸引了大家,很多人在尝试各种各样的走法,但谁也没有做到。看来要得到一个明确、理想的答案还不那么容易。

1736年,有人带着这个问题找到了当时的大数学家欧拉,欧拉经过一番思考,很快就用一种独特的方法给出了解答。欧拉把这个问题首先简化,他把两座小岛和河的两岸分别看作四个点,而把七座桥看作这四个点之间的连线。那么这个问题就简化成,能不能用一笔就把这个图形画出来。经过进一步的分析,欧拉得出结论——不可能每座桥都走一遍,最后回到原来的位置。并且给出了所有能够一笔画出来的图形所应具有的条件。这是拓扑学的“先声”。

在拓扑学的发展历史中,还有一个著名而且重要的关于多面体的定理也和欧拉有关。这个定理内容是:如果一个凸多面体的顶点数是v、棱数是e、面数是f,那么它们总有这样的关系:f+v-e=2。

根据多面体的欧拉定理,可以得出这样一个有趣的事实:只存在五种正多面体。它们是正四面体、正六面体、正八面体、正十二面体、正二十面体。

著名的“四色问题”也是与拓扑学发展有关的问题。四色问题又称四色猜想,是世界近代三大数学难题之一。

四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家都被着上不同的颜色。”

1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战。1878~1880年两年间,著名律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理。但后来数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。于是,人们开始认识到,这个貌似容易的题目,其实是一个可与费马猜想相媲美的难题。

进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。不过不少数学家并不满足于计算机取得的成就,他们认为应该有一种简捷明快的书面证明方法。

上面的几个例子所讲的都是一些和几何图形有关的问题,但这些问题又与传统的几何学不同,而是一些新的几何概念。这些就是“拓扑学”的先声。
您需要登录后才可以回帖 登录 | 注册

本版积分规则

QQ|Archiver|小黑屋|几何尺寸与公差论坛

GMT+8, 2024-5-25 00:08 , Processed in 0.042538 second(s), 19 queries .

Powered by Discuz! X3.4 Licensed

© 2001-2023 Discuz! Team.

快速回复 返回顶部 返回列表